Crashing Electricity Grids

Use of OSINT:

Wang and colleagues at Dalian University of Technology in the Chinese province of Liaoning modelled the US’s west-coast grid using publicly available data on how it, and its subnetworks, are connected (Safety Science, DOI: 10.1016/j.ssci.2009.02.002).

Their aim was to examine the potential for cascade failures, where a major power outage in a subnetwork results in power being dumped into an adjacent subnetwork, causing a chain reaction of failures. Where, they wondered, were the weak spots? Common sense suggests they should be the most highly loaded networks, since pulling them offline would dump more energy into smaller networks.

Smart network analysis of vulnerabilities:

To find out if this is indeed the case, the team analysed both the power loading and the number of connections of each grid subnetwork to establish the order in which they would trip out in the event of a major failure. To their surprise, under particular loading conditions, taking out a lightly loaded subnetwork first caused more of the grid to trip out than starting with a highly loaded one.

“An attack on the nodes with the lowest loads can be a more effective way to destroy the electrical power grid of the western US due to cascading failures,” Wang says. To minimise the risk, he says, the grid’s operators should defend the west coast sections by adjusting their power capacity to ensure these specific conditions do not arise.



-Shlok
Sign up for my newsletter.

11. September 2009 by Shlok Vaidya
Categories: Thinking | Tags: | Leave a comment

Leave a Reply

Required fields are marked *